
Decentralized Multichannel Medium Access Control:
Viewing Desynchronization as a Convex Optimization

Method

Nikos Deligiannis
∗

Vrije Universiteit Brussel -
iMinds

University College London
ndeligia@etro.vub.ac.be

João F. C. Mota
University College London

j.mota@ucl.ac.uk

George Smart
University College London
g.smart@ee.ucl.ac.uk

Yiannis Andreopoulos
University College London

i.andreopoulos@ucl.ac.uk

ABSTRACT
Desynchronization algorithms are essential in the design of
collision-free medium access control (MAC) mechanisms for
wireless sensor networks. Desync is a well-known desyn-
chronization algorithm that operates under limited listen-
ing. In this paper, we view Desync as a gradient descent
method solving a convex optimization problem. This en-
ables the design of a novel decentralized, collision-free, mul-
tichannel medium access control (MAC) algorithm. More-
over, by using Nesterov’s fast gradient method, we obtain
a new algorithm that converges to the steady network state
much faster. Simulations and experimental results on an
IEEE 802.15.4-based wireless sensor network deployment
show that our algorithms achieve significantly faster con-
vergence to steady network state and substantially higher
throughput compared to the recently standardized IEEE
802.15.4e-2012 time synchronized channel hopping (TSCH)
scheme. In addition, our mechanism has a comparable power
dissipation with respect to TSCH and does not need a co-
ordinator node or coordination channel.

Categories and Subject Descriptors
C.2.1 [Computer- Communication Networks]: Network
Architecture and Design, Distributed Networks;
G.1.6 [Numerical Analysis]: Optimization, convex pro-
gramming.

∗Corresponding author. The authors acknowledge the sup-
port from the U.K. EPSRC, projects EP/K033166/1 and
EP/M00113X/1.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
IPSN ’15, April 14 - 16, 2015, Seattle, WA, USA.
Copyright 2015 ACM 978-1-4503-3475-4/15/04 ...$15.00.
http://dx.doi.org/10.1145/2737095.2737108.

General Terms
Theory, medium access control, distributed systems

Keywords
Decentralized multichannel coordination, medium access con-
trol, synchronization, desynchronization, gradient methods.

1. INTRODUCTION
Data-intensive wireless sensor network (WSN) applica-

tions, such as wireless visual sensor networks [2, 16], drone
robots [45], or wireless capsule endoscopy [17], extend the
human ability to visualize areas, detect events or explore
hard-to-reach environments. Such applications impose strin-
gent communication requirements on the network. In par-
ticular, to transmit high amounts of sensed data, they re-
quire energy-efficient medium access control (MAC) proto-
cols. In addition, self-inflicted packet collisions need to be
avoided, as they lead to unwanted energy consumption. In
this context, in order to achieve fair TDMA scheduling, it
is key to develop MAC protocols that perform synchroniza-
tion and/or desynchronization at the MAC layer [1, 7, 11,
12, 34, 44, 47, 49]. Moreover, to extend TDMA scheduling
to large-scale networks, it is important to develop proto-
cols that achieve desynchronization across multiple chan-
nels [42,44,47].

1.1 Related Work
Conventional multichannel MAC schemes for WSNs make

use of a global coordinator node or clock (e.g., GPS sys-
tem) [44, 49] and a coordination channel. Under this cate-
gory, which we refer to as centralized protocols for WSNs ,
the state-of-the-art is the time-synchronized channel hop-
ping (TSCH) [44] protocol, which has been included in the
IEEE 802.15.4e-2012 standard [21, 51]. According to the
concept of channel hopping, nodes can hop between the 16
channels of the 2.4 GHz band so that transmitters and re-
ceivers are synchronized and evenly spread across channels.
In this way, nodes are not constantly using a channel with
excessive interference.

According to TSCH, wireless sensor nodes reserve time-
slots within the predefined slotframe interval and within the

13

16 channels of IEEE 802.15.4. The TSCH timeslot reser-
vation procedure, however, follows a rather complex adver-
tising request-and-acknowledgment (RQ/ACK) process on
a coordination channel. The use of this coordination chan-
nel renders TSCH a centralized MAC protocol and leads
to several drawbacks. First, this channel is prone to in-
terference and occasional self-inflicted collisions when data-
intensive communications are required. This is because,
under high data rates, the nodes are set to advertise slot
reservations very aggressively. Second, in case of interfer-
ence, TSCH-based networks suffer from slow convergence to
steady state and low connectivity, as many of the advertise-
ment RQ/ACK messages on the coordination channel are
not heard by the targeted nodes. Third, if slot advertis-
ing is not aggressive and nodes leave the network, their slots
may remain unoccupied for long periods until another adver-
tisement RQ/ACK process reassigns them to other nodes,
thereby limiting the bandwidth usage per channel.

In the category of decentralized WSN MAC-layer proto-
cols several synchronization or desynchronization mecha-
nisms have been proposed recently [3, 6, 10–12, 19, 23–25,
29, 34, 35, 40, 41, 44]. These mechanisms are based on dis-
tributed synchronization and desynchronization primitives
that achieve and maintain distributed coordination between
local clocks of networked agents via the exchange of limited
information. These algorithms are inspired by decentral-
ized coordination phenomena observed in natural phenom-
ena (e.g., fireflies beaconing, pacemaker cells of the heart,
superconducting Josephson junctions, etc.) [23, 27, 34, 37],
and are expressed mathematically through the pulse-coupled
oscillator (PCO) model by Mirollo and Strogatz [27] and Pe-
skin [36].

Based on the PCO model, several distributed synchroniza-
tion and desynchronization algorithms with various impor-
tant properties have been proposed for WSNs. In particular,
the algorithms in [12, 33, 37] support limited listening; the
works in [6, 11, 12, 29] provide solutions amenable to multi-
hop network topologies and the hidden nodes’ problem; and
the works in [23–25] present mechanisms that enable a con-
vergence speed-up.

The link between PCO-based synchronization methods
and consensus algorithms for networked oscillators is estab-
lished in [32]. However, only limited work has been focused
on extending distributed desynchronization to the multi-
channel case [7].

1.2 Contribution
Inspired by the link between consensus algorithms and

PCOs [32], we show that Desync [35], a well-known desyn-
chronization primitive with limited listening, can be seen
as a gradient descent method. This enables for the prob-
lem of decentralized multichannel medium access control to
be casted as an optimization problem. In particular, we
propose a new joint synchronization and desynchronization
primitive that yields decentralized multichannel MAC co-
ordination with limited listening. Using optimization the-
ory tools we prove that our algorithm converges to per-
fect TDMA scheduling in a multichannel setting. In addi-
tion, by using Nesterov’s accelerated version of the gradient
method [30, 31], we propose an algorithm that provides for
faster convergence to the steady network state.

Finally, via simulations and experiments using a WSN de-
ployment abiding by the IEEE 802.15.4 standard, we show

that the proposed mechanism and its fast counterpart lead to
decentralized multichannel MAC-layer coordination, achiev-
ing faster convergence to steady state and higher network
throughput than the state-of-the-art TSCH protocol, while
incurring comparable power consumption.

1.3 Outline
The remainder of the paper is organized as follows: Sec-

tion 2 presents the background on pulse-coupled oscillator
methods, while Section 3 presents our new fast version of the
Desync algorithm. Section 4 presents our novel formulation
of multichannel coordination. Experiments on the proposed
algorithms are given in Section 5. Finally, Section 6 draws
the conclusions of the work.

2. BACKGROUND ON PCO PRIMITIVES
Consider a fully-meshed WSN comprising n nodes. Each

node acts as a pulse-coupled oscillator (PCO) [27]. When
a node does not interact with others (when, for example,
listening is switched-off), it broadcasts a fire message or
pulse periodically. This is modeled by assigning to node i a
phase θi(t), whose value at time t is given by [12,33]

θi(t) =
t

T
+ φi mod 1 , (1)

where φi ∈ [0, 1] is the phase offset of node i and mod 1
denotes the modulo operation with respect to the unity.
Fig. 2.1 illustrates equation (1) graphically: the phase θi(t)
of node i can be seen as a bead moving clockwise on a cir-
cle, whose origin coincides both with 0 and 1 [13,27,33,34].
From Fig. 2.1(a) to Fig. 2.1(b), all phase beads moved clock-
wise, keeping their relative distance, i.e., they moved at the
same speed. In Fig. 2.1(b), the phase of node i − 1 reaches
1, at a time we designate by ti−1, that is θi−1(ti−1) = 1.
When this happens, the respective node broadcasts a fire
message and resets its phase to 0, i.e., θi−1(ti−1) ← 0. A
firing of a node can trigger a phase update on other nodes,
as described next.

2.1 Mirollo-Strogatz and Peskin Model
When the nodes interact, e.g., by listening to each oth-

ers’ messages, they update their phases, according to a local
state function f(θi(t)), f : [0, 1] → [0, 1] that expresses the
PCO dynamics. When node i receives a fire message from
another node, it promptly updates its local state by a cou-
pling parameter δ. Namely, node i modifies its phase as

θ′
i(t) = f−1 (f(θi(t)) + δ) mod 1, (2)

where f−1(.) is the inverse PCO dynamics function.
Mirollo and Strogatz [27] proved that if f in (2) is mono-

tonically increasing and concave then, for any δ > 0, the
firings of the oscillators will converge to synchrony. The
same is achieved if f is convex, but the coupling parameter
is negative (δ < 0). Alternatively, when f is concave and
δ < 0, or when f is convex and δ > 0, the nodes’ phases will
spread out, leading to desynchrony. Next, we mention exist-
ing PCO-based algorithms that perform (de)synchronization
at the MAC layer of WSNs under limited listening. To ex-
press the rate of convergence, we introduce the notion of
firing round, which is completed when each node in the net-
work has fired exactly once.

14

0

θi+1(t)

θi−1(t) θi(t)

(a) ti+1 < t < ti−1

0

θi+1(ti−1)

θi−1(ti−1)
θi(ti−1)

θ′
i(ti−1)

(b) t = ti−1

Figure 1: Illustration of the phase update of node i
according to the Desync algorithm: (a) at time in-
stance t node i + 1 and node i have fired (at time
instances ti+1 and ti+1, respectively) and node i = 1
is about to fire; (b) when node i− 1 fires at time in-
stance ti−1, node i updates its phase from θi(ti−1)
to θ′

i(ti−1), towards the average of the phases of
nodes i− 1 and i + 1, its phase neighbors.

2.2 PCO-based Algorithms
Hong et al. [19] proposed a scalable, low-complex proto-

col that performs synchronization in large scale WSNs and
has applications in cooperative reach-back communications.
Their synchronization algorithm is based on the PCO dy-
namics model from Peskin [36]:

f(θ) = C (1− exp(−γTθ)) ,

where C − 1/ (1− exp(−γT)) and γ is a leakage factor.
Pagliari et al. [33] proposed a PCO-based desynchroniza-

tion algorithm with updates

θ′
i(tj) = (1− α)θi(tj) mod 1, (3)

obtained by applying the convex function f(θ(t)) = − log(θ(t))
and the coupling parameter δ = − log(1 − α) in (2). The
phase update in (3) is performed when another node, say
node j, fires at time instant tj . The jump-phase parame-
ter α ∈ (0, 1) controls the phase increment. The network
reaches the state of desynchrony at time t, after which the
interval between consecutive firings is 1/n up to a small
threshold ε. The update (3) was shown to achieve desyn-
chrony even when each node carries out limited listening, i.e.,
listening for message broadcasts only within the [T − T

n
, T]

interval of its own pulse cycle [33].
In the Desync algorithm [12, 35], the nodes are ordered

according to their initial phases: 0 ≤ θ1(0) < θ2(0) < ∙ ∙ ∙ <
θn(0) < 1. Assuming failure-free and noiseless beacon trans-
mission and reception, the order of the firings in Desync is
always the same [12, 35], i.e., node i + 1 fires always after
node i, for i = 1, . . . , n − 1, and node 1 fires always after
node n. The phase θi of node i is updated based on the
phases θi−1 and θi+1 of its phase neighbors1, nodes i − 1
and i+1, respectively. This is illustrated in Fig. 2.1(b): im-
mediately after node i − 1 transmits a fire message, node i
modifies its phase towards the middle of the interval between
the phases of nodes i− 1 and i + 1. The update formula for

1We use the term “phase neighbors” to refer to nodes that
fire consecutively. This concept of neighbors has nothing
to do with neighbors in the communication network. We
a assume a fully or densely connected communication net-
work, that is, if their listening is switched-on, each node can
communicate with any node in the network.

the phase of node i in Desync is given by [35]

θ′
i(ti−1) = (1− α)θi(ti−1) + α

θi−1(ti−1) + θi+1(ti−1)

2
, (4)

where ti−1 is the time instant in which node i− 1 fires, i.e.,
θi−1(ti−1) = 1, and i = 1, 2, . . . , n, with periodic extension
at the boundaries. When node i updates its phase, it has a
stale knowledge of the phase of node i + 1. By stale knowl-
edge we mean that it only knows the previous value of θi+1

and not the current one. This is because node i + 1 mod-
ified its phase when node i fired, but the value of the new
phase has not been “announced” yet [35]. In Desync, each
node: (i) updates its phase once in each firing round; (ii)
does not require knowledge of the total number of nodes, n,
in the network; (iii) allows for limited listening, as only the
messages from the two phase neighbors are required. These
features make Desync quite popular [12,35]. Regarding the
convergence speed of Desync, an operational estimate of
the number of firing rounds required to reach convergence
was established in [8, 9].

3. DESYNC AS A GRADIENT METHOD
Driven by the connections between synchronization and

consensus algorithms [32], we now describe the Desync prim-
itive [12,35] as a gradient descent method applied to an un-
constrained optimization problem.

Fig. 2 shows the first five phase configurations of a net-
work with four nodes. The staleness of Desync makes each
node i update its phase at iteration k using θ

(k−1)
i−1 in place

of θ
(k)
i−1. For example, in Fig. 2(c), node 2 updates its phase

at the firing of node 1. According to (4), this update re-
quires the value of θ1 and θ3. Since node 2 is unaware

of the current value of θ3, i.e., the updated phase θ
(1)
3 , it

will use θ
(0)
3 instead; in other words, it uses a stale version

of θ3. Similarly, in step (e), node 4 updates its phase using

a stale version of θ1, θ
(0)
1 , and a non-stale version of θ3, θ

(1)
3 .

For the purpose of the interpretation, however, we assume
that node 4, which was the first node to fire (cf. Fig. 2(a)),

uses θ
(0)
3 (in gray) and not θ

(1)
3 . We call this the extra stal-

eness assumption . Notice that this assumption only applies
to the node that first fired. We remark that the implemen-
tation of Desync using this assumption has a performance
almost indistinguishable from the original one in [12,35].

The first step is to write (4) in terms of phase offsets. To
do that, consider a node 2 ≤ i ≤ n − 1 and replace (1)

into (4) at iteration k, using φ
(k)
i to denote the phase offset

of node i at iteration k:

θ′
i(ti−1) =

ti−1

T
+ φ

(k)
i

= (1− α)
[ti−1

T
+ φ

(k−1)
i

]

+
α

2

[ti−1

T
+ φ

(k−1)
i−1 +

ti−1

T
+ φ

(k−1)
i+1

]

=
ti−1

T
+ (1− α)φ

(k−1)
i + α

φ
(k−1)
i−1 + φ

(k−1)
i+1

2
.

Subtracting ti−1/T from both sides, we get

φ
(k)
i = (1− α)φ

(k−1)
i + α

φ
(k−1)
i−1 + φ

(k−1)
i+1

2
. (5)

Since θ wraps around 1, the expression for nodes 1 and n

requires a correcting term: for i = 1, φ
(k−1)
n in (5) should

15

0

θ
(0)
4

θ
(0)
3

θ
(0)
2

θ
(0)
1

(a)

0

θ
(0)
4

θ
(0)
2

θ
(0)
1

θ
(0)
3

θ
(1)
3

(b)

0

θ
(0)
4

θ
(1)
3

θ
(0)
1

θ
(0)
2

θ
(1)
2

(c)

0

θ
(0)
4

θ
(1)
3

θ
(1)
2

θ
(0)
1

θ
(1)
1

(d)

0

θ
(0)
4

θ
(1)
3

θ
(0)
3

θ
(1)
2

θ
(1)
1

θ
(0)
4

θ
(1)
4

(e)

Figure 2: First five phase configurations of 4 nodes running Desync: (a) initial phases, before any firing; (b)

first phase update: node 3 updates θ
(0)
3 to θ

(1)
3 at the firing of node 2. Note that between (a) and (b) nodes 4

and 3 fired, but did not cause any update. Remaining figures: node i fires and node j updates its phase,
where (i, j) is (1, 2) in (c), (4, 1) in (d), and (3, 4) in (e). Due to the staleness of Desync and our extra staleness

assumption for node 4, all updates use the initial values θ
(0)
1 , θ

(0)
2 ,θ

(0)
3 , or θ

(0)
4 , and not the updated ones.

be replaced with φ
(k−1)
n − 1; for i = n, φ

(k−1)
1 in (5) should

be replaced with φ
(k−1)
1 + 1. While the natural staleness of

Desync allows writing (5) for i = 1, . . . , n−1 (with the cor-
recting term for node 1), it is our extra staleness assumption
that makes (5) also applicable to node n (with the proper

correcting term). Using φ(k) = (φ
(k)
1 , φ

(k)
2 , . . . , φ

(k)
n) ∈ Rn

to denote the phases of all nodes at iteration k, and d :=
(1, 0, . . . , 0,−1) ∈ Rn, we can now write (5) for all nodes in
vector form:

φ(k) =

1− α α
2

0 ∙ ∙ ∙ 0 α
2

α
2

1− α α
2
∙ ∙ ∙ 0 0

...
. . .

...
...

α
2

0 0 ∙ ∙ ∙ α
2

1− α

φ(k−1)

−
α

2
d . (6)

Equation (6) can be seen as a particular instantiation of
a discrete-time consensus problem [14, 32, 39, 50] with an
exogenous input (that is, the vector d). In the control lit-
erature, consensus with exogenous inputs is usually referred
to as multi-agent consensus with informed leaders [38]. We
may resort to tools coming from linear system analysis to
characterize the convergence properties of (6) and its equi-
libria subspace. However, we view (6) as an algorithm solv-
ing an optimization problem, since this can lead to a new
accelerated version of desynchronization. We establish the
following:

Proposition 1. The Desync primitive in (6) is the gra-
dient descent method,

φ
(k) = φ(k−1) − β∇g(φ(k−1)) , (7)

with stepsize β = α/2 applied to

minimize
φ

g(φ) :=
1

2

∥
∥
∥Dφ−

1

n
1n + en

∥
∥
∥

2

2
, (8)

where 1n = (1, . . . , 1) ∈ Rn, en = (0, . . . , 0, 1) ∈ Rn, and

D =

−1 1 0 0 . . . 0
0 −1 1 0 . . . 0
...

. . .
. . .

...
0 . . . 0 0 −1 1
1 . . . 0 0 0 −1

∈ Rn×n . (9)

Proof. We first compute the gradient of g:

∇g (φ) = DT (Dφ−
1

n
1n + en) = DTDφ+ d , (10)

where d =DTen is the vector in (6). Note that we used the
fact that DT 1n = 0n. Hence, (7) becomes

φ(k) = φ(k−1) − βDTDφ(k−1) − βd

= (In − βDTD)φ(k−1) − βd , (11)

where In ∈ Rn×n is the identity matrix. Setting β = α/2,
and noticing that

DTD =

2 −1 0 0 ∙ ∙ ∙ 0 −1
−1 2 −1 0 ∙ ∙ ∙ 0 0

0 −1 2 −1 ∙ ∙ ∙ 0 0
...

. . .
...

−1 0 0 0 −1 2

, (12)

(11) is exactly (6).

Notice that, the optimality conditions for (8) implicitly
impose the differences between consecutive phases to be 1/n.
To see that, let φ? denote a solution of (8), i.e., ∇g(φ?) = 0
or DTDφ? = −d. From (12), we have

φ?
i =

φ?
i−1 + φ?

i+1

2
, i = 2, . . . , n− 1 , (13)

φ?
n =

φ?
n−1 + (φ?

1 + 1)

2
, (14)

where we omitted one equation, because DTD is rank de-
ficient. Equations (13) impose each φ?

i to be the average
of φ?

i−1 and φ?
i+1, for i = 2, . . . , n − 1, and equation (14)

imposes φ?
n to be the average of φ?

n−1 and φ?
1 + 1. This is

shown in Fig. 3 for 5 nodes. The only possibility is to have
φ?

i+1−φ?
i = 1/n, for all i = 1, 2, . . . , n. From the interpreta-

tion in (8), we can also see that if φ? is a solution of (8), any
φ? + c1n, for any c ∈ R, is also a solution of (8), because 1n

belongs to the nullspace of the matrix D.
It is known that every limit point of the gradient descent

method (7) minimizes g(φ) whenever ∇g is Lipschitz contin-
uous, i.e., there is an L > 0 such that ‖∇g(y)−∇g(x)‖2 ≤
L‖y−x‖2 for all x, y ∈ Rn, and β ∈ (0, 2/L) [4, Prop.1.2.3].
In our case, g is twice differentiable with an Hessian matrix

16

0 1

φ?
1 φ?

2 φ?
3 φ?

4 φ?
5 φ?

1 + 1

1
n

1
n

Figure 3: Illustration of the optimality conditions
in (13)-(14) for problem (8).

equal to DTD. Therefore, any L ≥ λmax(D
TD) is a valid

Lipschitz constant, where λmax(∙) is the maximum eigen-
value of a matrix. From (12), we see that DTD coincides
with the Laplacian matrix of the ring graph and, thus, its
eigenvalues are given by 2 − 2 cos(2πk/n), k = 1, . . . , n [43,
Lemma 2.4.4]. The maximum magnitude of these eigen-
values is equal to 4, when n is even, and is smaller than 4,
when n is odd. Hence, we can set L = 4. It follows that every
limit point of (6) is a solution of (8) whenever β ∈ (0, 1/2),
that is, α ∈ (0, 1).

Fast-Desync: An important advantage of viewing Desync
as an optimization algorithm is that we can derive faster
primitives based on more efficient optimization algorithms.
For example, Nesterov’s fast gradient algorithm [30,31] solves
the same set of problems as the gradient method does, but
exhibits a much faster convergence rate. It consists of (we
use the version in [46]):

φ
(k) = μ(k−1) − β∇g(μ(k−1)) (15a)

μ(k) = φ(k) +
k − 1

k + 2

(
φ(k) − φ(k−1)) , (15b)

where μ ∈ Rn is an auxiliary vector. It is known the se-
quences {φ(k)} and {μ(k)} produced by (15) converge to
the same solution of (8), whenever ∇g is Lipschitz continu-
ous with constant L and β ∈ (0, 1/L]. Notice that the range
of β is smaller than in the gradient method. However, at the
expense of small extra computation and memory, Nesterov’s
method (15) takes O(1/

√
ε) iterations to produce a point φ

satisfying g(φ)− g(φ?) ≤ ε, where φ? minimizes g, whereas
the gradient method (7) takes O(1/ε) iterations [46]. We
will use this faster version of Desync, which we call Fast-
Desync, in our implementation of the multichannel protocol
presented in the next section.

4. MULTICHANNEL COORDINATION
We now propose a new joint synchronization-desynchroni-

zation (Sync-Desync) algorithm for decentralized multi-
channel MAC. Prior to describing the proposed update rules,
we provide an introduction to the basic concept.

4.1 Proposed Multichannel MAC-layer Coor-
dination

Let a WSN comprise n nodes that are initially randomly
distributed in C channels [see Fig. 4(a)]—for example, the
C = 16 channels of the IEEE 802.15.4 standard [26, 48].
The maximum achievable throughput per node is obtained
when the nodes are uniformly distributed across the avail-
able channels and a perfect TDMA scheduling is reached at
each channel [see Fig. 4(b)]. Note that if the total number of
nodes in the network, n, is divisible by C then the protocol
will lead to nc = n

C
nodes being present in each channel, al-

ternatively, nc =
{⌊

n
C

⌋
,
⌈

n
C

⌉}
nodes will be present in each

channel, as shown in Fig. 4(b). By considering that each
node acts as a pulse-coupled oscillator with a period of T sec-

(a) (b)

Figure 4: (left) Initial random distribution of 14
nodes in 4 available channels; (right) converged state
of the protocol with 3 nodes in channels 1 and 2 and
4 nodes in channels 1 and 2. The figures shows the
intra-channel desynchronization and inter-channel
synchronization between Desync (white) and Sync
(grey) nodes, respectively. The horizontal position
of a node indicates the firing moment.

onds, we propose a novel PCO-based mechanism that leads
to decentralized multichannel round-robin scheduling with-
out requiring a coordination node or coordination channel.
An illustration of the proposed algorithm is given in Fig. 5.
To this end, the nodes in each channel are divided in two
classes, each with distinguished roles (see Fig. 5). Specifi-
cally, all but one node (denoted as “Desync”) in each chan-
nel apply desynchronization with the aim to achieve TDMA
within the channel. Desync nodes (i.e., white nodes in Fig.
5) operate only within their channel, firing and listening to
messages from the other nodes in their channel. In addi-
tion, one “Sync” node per channel performs cross-channel
synchronization. The Sync node (i.e., grey nodes in Fig.
5) of each channel c, c ∈ [1, C], listens for the Sync fire
message in the next channel2, i.e., channel c + 1. A node
can be designated as the Sync node in a channel based on
a pre-established rule, e.g., the node with the smallest node
ID, or the node with the highest battery level (all nodes can
be made to report their node ID and battery status in their
beacon message broadcasts).

To balance the number of nodes per channel, a balancing
scheme also takes place during convergence. In particular, a
Sync node lying in channel c may jump to the next channel
(with cyclic extension at the border), if it detects that less
nodes are present there. Detection is possible by integrating
the number of nodes lying in a channel in the fire messages
transmitted by the nodes present in the channel. To avoid
a race condition, where nodes continuously jump channels,
the following conditions are defined for channel jumping:

{
nc − nc+1 ≥ 1, if c ∈ [1, C)

nc − nc+1 ≥ 2, if c = C

where nc denotes the number of nodes present in channel c,

with n =
C∑

c=1

nc. Note that when a Sync node jumps from

one channel to another both channels get into election mode
to elect their Sync nodes anew. Based on the described pro-
tocol, the network can reach a converged multichannel fair

2We consider a cyclic behaviour between channels 1 and 16
of IEEE 802.15.4 [26,48]. Namely, the Sync node at channel
16 listens for the fire message from the Sync node in channel
1.

17

Figure 5: Example of the phase updates per-
formed by the proposed MUCH-SYNC-DESYNC
algorithm. Grey/White nodes represent the phase
of SYNC/DESYNC nodes. In channel c, the phase
of the SYNC node is updated due to the firing of
the SYNC node in channel c + 1. In channel c + 1
the firing of the SYNC node also triggers a phase
update of the DESYNC node 2.

TDMA scheduling, where (i) the same number of nodes is
present at neighboring channels—if n is divisible by C then
nc = n

C
nodes are present in each channel, alternatively, the

nc =
{⌊

n
C

⌋
,
⌈

n
C

⌉}
nodes are present per channel—, (ii) the

nodes in each channel have converged to a TDMA schedul-
ing and (iii) the nodes in adjacent channels (with the same
number of nodes) have a parallel TDMA scheduling, where
nodes allocated with the same time-slot order transmit syn-
chronously [see Fig. 4(b)].

Cross-channel synchronization in the converged state, which
is provided by the Sync nodes, enables for a swapping mech-
anism to kick in. Specifically, nodes (both of Sync and
Desync type) in adjacent channels can swap channels and
time-slots in pairs using a simple RQ/ACK scheme3. Chan-
nel swapping allows for communication between nodes ini-
tially present in different channels.

If nodes join or leave the network, all remaining nodes
adjust their beacon packet timings spontaneously, in order
to converge to multichannel TDMA anew. As such, the
proposed mechanism leads to decentralized multichannel co-
ordination of the WSN nodes from a random initial state,
without the need for a coordination node or channel. Once
convergence is achieved, the only overhead in the proposed
framework is due to the fire messages, which, however, are
very short packets compared to the payload data.

4.2 Proposed Joint Sync-Desync Primitive
To describe the joint Sync-Desync primitive that we pro-

pose, denote the phase of node i = 1, . . . , nc in channel
c = 1, . . . , C with θc,i and the corresponding phase offset
with φc,i. Without loss of generality, we will assume that
the Sync node in each channel is node 1; all the remaining
nodes are Desync nodes. Our goal is to create a primitive
that converges to a Desync state among the nodes in the
same channel and to a Sync state among the first nodes of
each channel. Inspired by Proposition 1, we formulate this
problem as

3Swap-channel RQ or ACK packets can be transmitted at
another channel during a short interval after and/or before
a fire message transmission at a node’s channel.

minimize
φ1,...,φC

h(φ1, . . . ,φC) :=
1

2

C∑

c=1

∥
∥
∥Dcφc−

1

nc
1nc +ec

∥
∥
∥

2

2

+
1

2

C∑

c=1

(
wc+1

Tφc+1 −wc
Tφc

)2

, (16)

where φc = (φc,1, φc,2, . . . , φc,nc) ∈ R
nc contains the phase

offsets of all nodes of channel c,Dc is the same matrix as (9),
but with dimensions nc × nc, ec = (0, 0, . . . , 1) ∈ Rnc , and
wc = (1, 0, . . . , 0) ∈ Rnc . The objective of (16) has two
terms: the first one imposes desynchronization among all the
nodes of the same channel; the second one imposes synchro-
nization among the first nodes of consecutive channels. The
second term is inspired by optimization-based approaches to
the average consensus problem [18,28].

Although we use Fast-Desync in our implementation, for
simplicity, we derive here the multichannel primitive using
the Desync version in (6). Given that the partial gradient
of h with respect to φc is

∇φch(φ1, . . . ,φC) = Dc
TDcφc + dc

+
(
2wc

Tφc −wc−1
Tφc−1 −wc+1

Tφc+1

)
wc , (17)

where dc := (1, 0, . . . , 0,−1) ∈ Rnc , it can be easily shown
that the gradient descent algorithm applied to (16) with step
size β = α/2 yields

φ
(k)
c,i = (1−2α)φ

(k−1)
c,i +

α

2
(φ

(k−1)
c,i−1 +φ

(k−1)
c,i+1 +φ

(k−1)
c−1,i +φ

(k−1)
c+1,i) ,

(18)
for i = 1, and

φ
(k)
c,i = (1− α)φ

(k−1)
c,i +

α

2
(φ

(k−1)
c,i−1 + φ

(k−1)
c,i+1 + (dc)i) , (19)

for i 6= 1. Note that (19) is similar to the phase update
in (5) for Desync. Although the application of the gradi-
ent descent to (16) leads to a very natural algorithm, the
updates for the Sync nodes in (18) fail to satisfy the cou-
pling rules we described in Section 4.1. Namely, a direct im-
plementation of (18) in a wireless transceiver requires each
Sync node to listen for fire messages at the channel where
it resides, as well as in the previous and subsequent chan-
nels. This makes the implementation of (18)-(19) impracti-
cal if we use conventional half-duplex transceiver hardware
in IEEE 802.15.4-based WSNs. This issue is caused by the
symmetry of the Hessian matrix of h, and cannot be solved,
at least in a straightforward way, with optimization-based
techniques. We tackle this problem by modifying the matrix
associated with the iterations (18)-(19), exploring the fact
that there is one degree of freedom in each channel.

Multichannel Sync-Desync (MuCh-Sync-Desync):
Without loss of generality, assume each channel has n :=
n1 = n2 = ∙ ∙ ∙ = nC nodes. We propose iterating

φ1
(k)

φ2
(k)

...

φC
(k)

=

Q1 Q2 0 ∙ ∙ ∙ 0
0 Q1 Q2 ∙ ∙ ∙ 0
...

. . .
...

0 0 ∙ ∙ ∙ Q1 Q2

Q2 0 0 ∙ ∙ ∙ Q1

︸ ︷︷ ︸
=:M

φ1
(k−1)

φ2
(k−1)

...

φC
(k−1)

18

+ β

en

en

...
en

︸ ︷︷ ︸
=:b

, (20)

where 0 is the n× n zero matrix, en := (0, 0 . . . , 0, 1) ∈ Rn,
Q2 := Diag(γ, 0, . . . , 0) ∈ Rn×n, 0 < γ < 1, and Q1 is the
n× n matrix

Q1 :=

1− γ 0 0 0 ∙ ∙ ∙ 0 0
β 1− 2β β 0 ∙ ∙ ∙ 0 0
0 β 1− 2β β ∙ ∙ ∙ 0 0
...

. . .
...

...
β 0 0 0 ∙ ∙ ∙ β 1− 2β

.

According to (20), all but the first node in channel c, i.e.,
i 6= 1, perform (19), whereas node 1 performs

φ
(k)
c,1 = (1− γ)φ

(k−1)
c,1 + γ φ

(k−1)
c+1,1 , (21)

which, in contrast with (18), is amenable to a practical im-
plementation. Recall that the Sync node in channel c up-
dates its phase at the firing of the Sync node in channel c+1,
i.e., at tc+1,i, where θc+1,i(tc+1,i) = 1. It can be shown that
(21) corresponds to

θ′
c,1(tc+1,1) = (1− γ)θc,1(tc+1,1) + γ mod 1 , (22)

in terms of phase updates. Since 0 ≤ θc,1(t) ≤ 1 and
0 < γ < 1, (22) exhibits inhibitory coupling [19] between
the Sync nodes in subsequent channels, thereby leading
to synchronization of their phases. Note that the iteration
in (20) can be straightforwardly extended to the case where
the channels have different number of nodes; in this case,
the sizes of vectors φ, e, and matrices Q1 and Q2 vary per
channel c = 1, . . . , C but their format is the same. Still,
the update equations, described in (19) and (21) remain the
same independently of the number of nodes present in each
channel.

Proposition 2. The sequence produced by (20) converges
to a solution of (16) whenever 0 < γ < 1 and 0 < β < 1/2.

Proof Sketch. The proof is divided into two steps. The
first step is the simplest one: using reasoning analogous to
the one in Fig. 3, it can be shown that any fixed point of (20)
is a solution of problem (16). The second step, which is
more complex, consists of showing that the sequence pro-
duced by (20) converges (to a fixed point). What makes
the second step hard is that the matrix M has a spectral
radius ρ(M) equal to 1. In fact, it can be checked by inspec-
tion that the vector of ones, 1nC , is a right eigenvector ofM
associated to the eigenvalue 1, and u := (e1, e1, . . . , e1) ∈
(Rn)C is a left eigenvector ofM also associated to the eigen-
value 1. If ρ(M) were strictly less than 1, than it would
follow from [22, §1.2] that (20) converged to (I −M)−1b.
Also note that Perron-Frobenius theory is not applicable,
becauseM is not irreducible. Yet, it is possible to compute
the eigenvalues of M in closed-form, as explained in the
next paragraph, and conclude that ρ(M) = 1 has algebraic
(and thus geometric) multiplicity 1. This implies that we
can write (20) as

φ(k) =Mφ(k−1) + 1nCu
Tφ(k−1) + b , (23)

whereM :=M−1nCu
T has spectral radius strictly smaller

than 1, i.e., ρ(M) < 1 [20, Lemma 8.2.7]. Then, using the

fact that uTφ(k) = uTφ(k−1) = ∙ ∙ ∙ = uTφ(1) = uTφ(0) , we
can rewrite (23) as

φ(k) =Mφ(k−1) + b , (24)

where b = b + 1nCu
Tφ(0). Since ρ(M) < 1, it follows

from [22, §1.2] that (24) converges to (I −M)−1b = (I −
M)−1b+ (I −M)−11nCu

Tφ(0), a well-defined and unique
fixed point of (20).

To compute the eigenvalues of M , we first find a permu-
tation matrix P that reorders the nodes such that the first
nodes of each channel correspond to the last coordinates of
the new coordinate system, i.e., φ is mapped onto

(φ1,2, φ1,3, . . . , φ1,n, φ2,2, φ2,3, . . . , φ2,n, . . . ,

φ1,1, φ2,1, . . . , φC,1) .

The matrices M and P TMP have the same eigenvalues,
but P TMP is block-upper triangular. Therefore, the eigen-
values of P TMP are the eigenvalues of the blocks in its
diagonal (counting multiplicity), which can be computed in
closed-form. In particular, the first n − 1 diagonal blocks
of P TMP are tridiagonal Toeplitz matrices and the last
block is a circulant matrix.

As mentioned before, we can modify (20) to make the nodes
in each channel perform Fast-Desync. This yields a primi-
tive that we call Fast-MuCh-Sync-Desync and whose per-
formance is assessed in the next section.

5. EXPERIMENTAL RESULTS

5.1 Simulation Results
Simulation results on the proposed MuCh-Sync-Desync

algorithm and its fast version (denoted as Fast-MuCh-Sync-
Desync) were obtained using MATLAB. We implemented
our algorithms using the event-driven simulator of Degesys
et al. [12] as basis for our software. We use two different
convergence thresholds, namely, ε = 10−3 and ε = 10−4.
Convergence to multichannel TDMA scheduling is reported
at the firing round after which successive updates never per-
turb each node’s phase above the predetermined threshold ε.
We note that our algorithms’ updates are performed on the
node’s phases θi. We set γ = 0.6 and evaluate the conver-
gence speed of the algorithm for various α values, ranging for
α = 0.05 to α = 0.95, with a stepsize of 0.05. All simulations
were repeated 400 times and average results are reported.

The results are given in Fig. 6(a)–(d) for nc = 4 nodes per
channel in C = 4, 6, 10, and 16 channels, respectively. The
results show that for various values of α both proposed algo-
rithms (namely, the simple and the fast version) converge.
The convergence of both algorithms is also independent of
the number on available channels in the network.

It is worth noticing that the proposed Fast-MuCh-Sync-
Desync algorithm offers a notable convergence speed-up
(i.e., 6.01%–42.54%) with respect to the simple MuCh-Sync-
Desync algorithm, irrespective of the number of available
channels. Furthermore, the convergence speed-up increases
when a strict threshold (ε = 10−4) is used, which is impor-
tant to guarantee strict convergence to cross-channel syn-
chronization as well as perfect TDMA scheduling in each
channel. The improvement is more significant at low and

19

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250

(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250

(c)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250

(d)

Figure 6: Average number of firing rounds for convergence to decentralized multichannel TDMA schedul-
ing for the proposed MuCh-Sync-Desync algorithm and its fast counterpart; nc = 4 nodes per channel are
considered with: (a) C = 4, (b) C = 6, (c) C = 10 and (d) C = 16 channels.

20

medium values of α, which are typically used in practice to
attenuate noise in fire message transmissions.

5.2 Experiments with TelosB Motes

5.2.1 Experimental setup
We implemented the proposed MuCh-Sync-Desync and

its Fast version, described in Section 4.1, as applications in
the Contiki 2.7 operating system running on TelosB motes.
By utilizing the NullMAC and NullRDC network stack op-
tions in Contiki, we control all node interactions at the
MAC layer via our code. Moreover, by utilizing the TelosB
high-resolution timer (rtimer library), we can achieve the
scheduling of transmission and listening events with sub-
millisecond accuracy. Our implementation follows the de-
scription of Section 4.2 and performs the iterations of (20)
with T = 100 ms and α = γ = 0.6. Initially, all nodes lis-
ten constantly until convergence is achieved in their channel.
When convergence in the steady network state is achieved,
data transmission is initiated and nodes switch to limited
listening so as to conserve energy. Therefore, the use of
MuCh-Sync-Desync or its Fast version influence the speed
of convergence and not the bandwidth of the network. Due
to interference in the unlicensed 2.4 GHz band of IEEE
802.15.4 and timing uncertainties in the fire message broad-
cast and reception, we apply the following practical modifi-
cations. These modifications ensure that, once the network
reaches the steady state, it remains there indefinitely until
the entire network operation is suspended, or nodes join or
leave the network.

Firstly, each node can transmit data in-between its own
fire message and the subsequent fire message from another
node, albeit allowing for a guard time of 6 ms before and
after the anticipated beacon broadcast times. In this way,
no collisions occur between data and fire message packets.

Secondly, in the steady state, each node turns its transceiver
on solely for the 12 ms guard time corresponding to the
beacon message they expect to receive. Moreover, all nodes
switch to “sparse listening”, that is, they listen for beacons
only once every eight periods, unless high interference noise
is detected. In the converged state, each node determines the
interference noise floor in-between transmissions by reading
the CC2420 RSSI register. If high interference is detected,
the node switches to regular listening. Thus, the option of
sparse listening does not affect the stability of MuCh-Sync-
Desync.

Thirdly, to remain in sparse listening (that is, to avoid
unnecessarily switching to prolonged listening, which is en-
ergy consuming) and avoid interrupting data transmission
due to transient interference, all nodes are set to switch to
full listening only if they do not receive Nc = 10 consecutive
fire messages. Our choice of Nc provides stable operation
under interference, albeit at the cost of slower convergence
and reaction time.

As mentioned in Section 4.1, once all nodes are activated,
they are first balanced across the available channels based
on the TFDMA balancing algorithm of Buranapanichkit and
Andreopoulos [7]. Namely, each node can switch to another
channel if it detects less nodes are present therein by sending
a switch message in its original channel.

5.2.2 Comparison against TSCH

We select TSCH as benchmark for our comparisons, since
it is a state-of-the-art MAC protocol for densely-connected
WSNs [47, 49]. Our implementation of TSCH follows the
6tisch simulator and TSCH standard [21,47,48]. Specifically,
channel 11 of IEEE 802.15.4 was used for advertisements,
the RQ/ACK ratio was set to 1

9
, the slotframe comprised

101 slots of 15 ms each, and one node (at the center of
our deployment) was set to broadcast the slotframe beacon
for global time synchronization. Finally, the network under
TSCH is deemed as converged to the steady state when 5%
or less of the timeslots changed within the last 10 slotframes.

We deployed n = 64 nodes in the C = 16 channels of
IEEE 802.15.4. This leads to nc = 4 nodes per channel
after balancing and converging to the steady state. The 64
TelosB motes were placed in four neighboring rooms on the
same floor of an office building, with each room containing 16
nodes. Our setup corresponds to scenarios involving dense
network topologies and data-intensive communications (e.g.,
visual sensor network applications [15,17]).

5.2.3 Power dissipation results
We assessed the average power dissipation of our scheme

against TSCH by placing selected TelosB motes in series
with a high-tolerance 1-Ohm resistor and by utilizing a high-
frequency oscilloscope to capture the current flow through
the resistor in real time. During this power dissipation ex-
periment, no other devices (or interference signal generators)
operating in the 2.4 GHz band were present in the area.
Average results over 5 min of operation are reported. The
average power dissipation of MuCh-Sync-Desync without
transmitting or receiving data payload was measured to be
1.58 mW. The average power dissipation of a TSCH node
under minimal payload (128 bytes per 4 s) was found to be
1.64 mW, which is very close to the value that has been in-
dependently reported by Vilajosana et al. [47]. Therefore,
under the same setup, our proposal and TSCH were found
to incur comparable power dissipation for their operation.

5.2.4 Convergence speed results
We investigate the convergence time of MuCh-Sync-Desync,

Fast-MuCh-Sync-Desync and TSCH under varying in-
terference levels. Rapid convergence to the steady state is
very important when the WSN is initiated from a suspended
state, or when sudden changes happen in the network (e.g.,
nodes join or leave).

We carried out 100 independent tests, with each room
containing an interference generator for 25 tests. To gener-
ate interference, an RF signal generator was used to create
an unmodulated carrier in the center of each WSN channel.
The carrier amplitude was adjusted to alter the signal-to-
noise-ratio (SNR) at each receiver [5]. The nodes were set
to maximum transmit power (+0 dBm) in order to operate
under the best SNR possible.

Fig 7 shows the time required for MuCh-Sync-Desync,
Fast-MuCh-Sync-Desync and TSCH to converge under
varying interfering signal power levels. The results obtained
with our Contiki implementation corroborate that our pro-
posal reduces the convergence time by an order of magnitude
in comparison to TSCH and that the Nesterov-based mod-
ification offers 36.48%-41.07% increased convergence speed
under a realistic setup. Moreover, the difference in con-
vergence time between the proposed mechanism and TSCH
increases with the interference level because TSCH nodes

21

-20 -15 -10 -5 0 5
0

5

10

15

20

25

30

35

Jamming Signal Power (dBm)

T
im

e
(s

)

MUCH-SYNC-DESYNC
FAST-MUCH-SYNC-DESYNC
TSCH

Figure 7: Average time required for MuCh-Sync-
Desync, its Fast version, and TSCH to converge un-
der various interference levels.

Table 1: Average Convergence Time (in seconds)
Under Hidden Nodes. Numbers in Parenthesis
Show the Convergence time of the Fast (Nesterov-
based) version of our proposal.

MuCh-Sync-Desync TSCH
Without Hidden Nodes 1.1356 (0.7351) 15.5845

With Hidden Nodes 1.8514 (1.2896) 15.2957

miss most of the advertisement RQ/ACK messages in the
advertisement (control) channel. This result demonstrates
the key advantages of our decentralized MAC mechanism
with respect to TSCH, namely: (i) it is fully decentralized
and (ii) it does not depend on an advertisement and ac-
knowledgement scheme.

5.2.5 Results under hidden nodes
We now investigate the robustness and convergence speed

of our scheme when some nodes in the WSN are hidden from
other nodes. We measure the time to achieve convergence
to steady state when a random subset of 20 nodes in our
WSN setup was programmed to ignore transmissions from
4 randomly chosen nodes. The results in Table 1 show that,
irrespective of the presence of hidden nodes, the convergence
of MuCh-Sync-Desync and its fast version is an order-of-
magnitude faster than that of TSCH. When hidden nodes
are present, the required convergence time of MuCh-Sync-
Desync (resp. its Fast version) increases by 63.03% (resp.
75.43%), while that of TSCH is actually sightly decreased
by 2.13%. This is to be expected, as TSCH nodes simply ig-
nore RQ packets from hidden nodes. Conversely, due to the
Desync (resp. Fast-Desync) process within each channel,
applied by MuCh-Sync-Desync (resp. its Fast version),
prolonged beaconing will take place until all hidden nodes
are placed amongst non-hidden Desync phase neighbors.
This spontaneous robustness of MuCh-Sync-Desync (and
its Fast version) to hidden nodes is an interesting property
that deserves further study. For instance, one can try to

-20 -15 -10 -5 0 5 10 15
0

10

20

30

40

50

60

70

80

90

100

Jamming Signal Power (dBm)

T
hr

ou
gh

pu
t (

kb
ps

)

MUCH-SYNC-DESYNC
TSCH

Figure 8: Total network throughput between MuCh-
Sync-Desync and TSCH under varying signal power
levels.

determine conditions that guarantee that no configuration
of hidden nodes can lead to instability.

5.2.6 Bandwidth results
We measure the total network throughput (i.e., total pay-

load bits transmitted by all nodes per sec) achieved with
MuCh-Sync-Desync and TSCH under various interference
levels. As stated in Section 5.2.1, both the proposed MuCh-
Sync-Desync or its Fast version achieve the same network
throughput, as data transmission is initiated only after con-
vergence to the steady network state (that is, perfect TDMA
scheduling per channel). The results in Fig 8 show that
MuCh-Sync-Desync systematically achieves substantially
higher network throughput (more than 40% increase w.r.t.
TSCH), irrespective of the interference level. Both protocols
suffer a significant throughput loss of under high interference
(i.e., above 10 dBm), which is, however, substantially more
severe for TSCH. In effect, when interference is above 12
dBm, the bandwidth obtained with TSCH drops to zero be-
cause of the inability to recover lost slots through advertis-
ing. Conversely, even under high interference levels, MuCh-
Sync-Desync recuperates bandwidth utilization due to the
elasticity of Sync and Desync mechanisms and the high
value used for Nc.

6. CONCLUSION
In this paper, we see Desync, a well-known desynchro-

nization method for the medium access control layer of wire-
less sensor networks (WSNs), as the gradient method, which
is used in convex optimization. Specifically, we proposed
MuCh-Sync-Desync, a novel completely decentralized and
collision-free multichannel MAC algorithm for WSNs. More-
over, we proposed a new fast version of this algorithm, which
is based on the Nesterov’s modification of the gradient method.
Fast-MuCh-Sync-Desync was shown to systematically im-
prove the convergence speed of the simple algorithm, ir-
respective of the number of available channels in the net-
work. In addition, using our WSN deployment, we compared
our MuCh-Sync-Desync algorithm and its fast counterpart
against time-synchronized channel hopping (TSCH), which

22

is included in the IEEE 802.15.4e-2012 standard. Our algo-
rithms were experimentally proven to provide for an order-
of-magnitude decrease in the convergence time to the net-
work steady state and more than 40% increase in the total
network throughput. Finally, the proposed algorithms offer
significantly-increased robustness to interference and hidden
nodes in the network, while requiring comparable power dis-
sipation and without requiring a coordination node or chan-
nel.

7. ACKNOWLEDGMENTS
We wish to thank Prof. Andrea Gasparri for his comments

on the final version of our manuscript.

8. REFERENCES
[1] M. S. A. Mutazono and M. Murata. Energy efficient

self-organizing control for wireless sensor networks
inspired by calling behavior of frogs. Computer
Communications, 2011.

[2] I. F. Akyildiz, T. Melodia, and K. R. Chowdhury. A
survey on wireless multimedia sensor networks.
Computer networks, 51(4):921–960, 2007.

[3] S. Ashkiani and A. Scaglione. Discrete dithered
desynchronization. arXiv preprint arXiv:1210.2122,
2012.

[4] D. P. Bertsekas. Nonlinear programming. 1999.

[5] C. A. Boano, T. Voigt, C. Noda, K. Romer, and
M. Zúñiga. Jamlab: Augmenting sensornet testbeds
with realistic and controlled interference generation.
In Int. Conf. on Information Processing in Sensor
Networks (IPSN), pages 175–186, 2011.

[6] I. Bojic, V. Podobnik, I. Ljubi, G. Jezic, and
M. Kusek. A self-optimizing mobile network:
Auto-tuning the network with firefly-synchronized
agents. Information Sciences, 182(1):77–92, 2012.

[7] D. Buranapanichkit and Y. Andreopoulos. Distributed
time-frequency division multiple access protocol for
wireless sensor networks. IEEE Wirel. Comm. Lett.,
1(5):440–443, Oct. 2012.

[8] D. Buranapanichkit, N. Deligiannis, and
Y. Andreopoulos. On the stochastic modeling of
desynchronization convergence in wireless sensor
networks. In IEEE Int. Conf. Acoustics, Speech and
Signal Processing, pages 5045–5049, 2014.

[9] D. Buranapanichkit, N. Deligiannis, and
Y. Andreopoulos. Convergence of desynchronization
primitives in wireless sensor networks: A stochastic
modeling approach. IEEE Trans. Signal Process.,
63(1):221–233, 2015.

[10] S. Choochaisri, K. Apicharttrisorn,
K. Korprasertthaworn, P. Taechalertpaisarn, and
C. Intanagonwiwat. Desynchronization with an
artificial force field for wireless networks. ACM
SIGCOMM Computer Communication Review,
42(2):7–15, 2012.

[11] D. De Guglielmo, G. Anastasi, and M. Conti. A
localized de-synchronization algorithm for periodic
data reporting in ieee 802.15. 4 wsns. In IEEE
Symposium on Computers and Communications
(ISCC), pages 605–610, 2012.

[12] J. Degesys and R. Nagpal. Towards desynchronization
of multi-hop topologies. In Proc. IEEE Int. Conf.

Self-Adaptive and Self-Organizing Syst. (SASO), pages
129–138, 2008.

[13] J. Degesys, I. Rose, A. Patel, and R. Nagpal. Desync:
self-organizing desynchronization and tdma on
wireless sensor networks. In Int. Conf. on Information
Processing in Sensor Networks (IPSN), pages 11–20,
2007.

[14] M. DeGroot. Reaching a consensus. J. American
Statistical Association, 69(345):118–121, 1974.

[15] N. Deligiannis, F. Verbist, J. Barbarien, J. Slowack,
R. Van de Walle, P. Schelkens, and A. Munteanu.
Distributed coding of endoscopic video. In IEEE Int.
Conf. Image Process. (ICIP), pages 1813–1816, 2011.

[16] N. Deligiannis, F. Verbist, A. C. Iossifides, J. Slowack,
R. Van de Walle, P. Schelkens, and A. Munteanu.
Wyner-ziv video coding for wireless lightweight
multimedia applications. EURASIP J. Wireless
Commun. Netw., 2012(1):1–20, 2012.

[17] N. Deligiannis, F. Verbist, J. Slowack, R. v. d. Walle,
P. Schelkens, and A. Munteanu. Progressively refined
wyner-ziv video coding for visual sensors. ACM Trans.
Sensor Netw., 10(2):21, 2014.

[18] T. Erseghe, D. Zennaro, E. Dall’Anese, and
L. Vangelista. Fast consensus by the alternating
direction multipliers method. IEEE Trans. Signal
Process., 59(11):5523–5537, 2011.

[19] Y.-W. Hong and A. Scaglione. A scalable
synchronization protocol for large scale sensor
networks and its applications. IEEE J. Sel. Areas
Commun., 23(5):1085–1099, 2005.

[20] R. A. Horn and C. R. Johnson. Matrix analysis.
Cambridge university press, 2012.

[21] IEEE 802.15.4e-2012. IEEE Standard for Local and
Metropolitan Area Networks. Part 15.4: Low-Rate
Wireless Personal Area Networks (LRWPANs)
Amendment 1: MAC Sublayer. IEEE Std., Apr. 2012.

[22] C. T. Kelley. Iterative Methods for Linear and
Nonlinear Equations. SIAM, Philadelphia, 1995.

[23] J. Klinglmayr and C. Bettstetter. Self-organizing
synchronization with inhibitory-couples oscillaotrs:
convergence and robustness. ACM Trans. on
Autonomous and Adaptive Systems, 7(3), Sept. 2012.

[24] R. Leidenfrost and W. Elmenreich. Firefly clock
synchronization in an 802.15.4 wireless network.
EURASIP J. Embed. Syst., 2009.

[25] C.-M. Lien, S.-H. Chang, C.-S. Chang, and D.-S. Lee.
Anchored desynchronization. In Proc. IEEE
INFOCOM’12, pages 2966–2970, 2012.

[26] G. Lu, B. Krishnamachari, and C. Raghavendra.
Performance evaluation of the IEEE 802.15. 4 MAC
for low-rate low-power wireless networks. In IEEE
Internat. Conf. on Perf., Comput., and Comm., pages
701–706, 2004.

[27] R. E. Mirollo and S. H. Strogatz. Synchronization of
pulse-coupled biological oscillators. SIAM Journal on
Applied Mathematics, 50(6):1645–1662, 1990.

[28] J. F. Mota, J. M. Xavier, P. M. Aguiar, and
M. Puschel. D-ADMM: A communication-efficient
distributed algorithm for separable optimization.
IEEE Trans. Signal Process., 61(10):2718–2723, 2013.

23

[29] A. Motskin, T. Roughgarden, P. Skraba, and
L. Guibas. Lightweight coloring and desynchronization
for networks. In IEEE INFOCOM’09, pages
2383–2391, 2009.

[30] Y. Nesterov. A method of solving a convex
programming problem with convergence rate O(1/k2).
Soviet Mathematics Doklady, 27(2):372–376, 1983.

[31] Y. Nesterov. Introductory Lectures on Convex
Optimization: A Basic Course. Kluwer Academic
Publishers, 2004.

[32] R. Olfati-Saber, J. A. Fax, and R. M. Murray.
Consensus and cooperation in networked multi-agent
systems. Proceedings of the IEEE, 95(1):215–233, 2007.

[33] R. Pagliari, Y.-W. P. Hong, and A. Scaglione.
Bio-inspired algorithms for decentralized round-robin
and proportional fair scheduling. IEEE J. on Select.
Areas in Commun., 28(4):564–575, May 2010.

[34] R. Pagliari and A. Scaglione. Scalable network
synchronization with pulse-coupled oscillators. IEEE
Trans. Mobile Comput., 10(3):392–405, 2011.

[35] A. Patel, J. Degesys, and R. Nagpal.
Desynchronization: The theory of self-organizing
algorithms for round-robin scheduling. Proc. IEEE
Int. Conf. Self-Adaptive and Self-Organizing Syst.
(SASO), july 2007.

[36] C. S. Peskin. Mathematical aspects of heart physiology.
Courant Institute of Mathematical Sciences, New York
University, 1975.

[37] Y.-W. Peter Hong, A. Scaglione, and R. Pagliari.
Pulse coupled oscillators’ primitive for low complexity
scheduling. In IEEE Int. Conf. Acoustics, Speech, and
Signal Processing, pages 2753–2756, 2009.

[38] W. Ren and R. W. Beard. Distributed consensus in
multi-vehicle cooperative control. Springer, 2008.

[39] A. Sarlette and R. Sepulchre. Synchronization on the
circle. http://arxiv.org/abs/0901.2408, 2009.

[40] O. Simeone, U. Spagnolini, Y. Bar-Ness, and S. H.
Strogatz. Distributed synchronization in wireless
networks. IEEE Signal Process. Mag., 25(5):81–97,
Sep. 2008.

[41] G. Smart, N. Deligiannis, Y. Andreopoulos, R. Surace,
V. Loscri, and G. Fortino. Decentralized
time-synchronized channel swapping for wireless
sensor networks. In 11th European Conference on
Wireless Sensor Networks (EWSN’14), poster
presentation, 2014.

[42] J. Song, S. Han, A. K. Mok, D. Chen, M. Lucas,
M. Nixon, and W. Pratt. WirelessHART: Applying
wireless technology in real-time industrial process
control. In IEEE Real-Time and Embed. Tech. and
Appl. Symp., (RTAS), pages 377–386, 2008.

[43] D. Spielman. The Laplacian, 2009. Lecture notes,
Spectral Graph Theory, Yale.

[44] A. Tinka, T. Watteyne, and K. Pister. A decentralized
scheduling algorithm for time synchronized channel
hopping. In Ad Hoc Netw., pages 201–216. 2010.

[45] Y.-C. Tseng, Y.-C. Wang, K.-Y. Cheng, and Y.-Y.
Hsieh. iMouse: an integrated mobile surveillance and
wireless sensor system. IEEE Computer, 40(6):60–66,
2007.

[46] L. Vandenberghe. Gradient method, Spring 2008-09.
Lecture Notes, Optimization Methods for Large-Scale
Systems (EE-236C), UCLA.

[47] X. Vilajosana, Q. Wang, F. Chraim, T. Watteyne,
T. Chang, and K. Pister. A realistic energy
consumption model for TSCH networks. IEEE
Sensors J., 2013.

[48] Q. Wang, X. Vilajosana, and T. Watteyne. 6TSCH
operation sublayer (6top). Internet-Draft, IETF Std.,
Rev. draft-wang-6tisch-6top-sublayer-00, Apr. 2014.

[49] T. Watteyne, X. Vilajosana, B. Kerkez, F. Chraim,
K. Weekly, Q. Wang, S. Glaser, and K. Pister.
Openwsn: a standards-based low-power wireless
development environment. Transactions on Emerging
Telecommunications Technologies, 23(5):480–493,
2012.

[50] L. Xiao and S. Boyd. Fast linear iterations for
distributed averaging. Systems and Control Letters,
53:65–78, 2004.

[51] P. Zand, S. Chatterjea, K. Das, and P. Havinga.
Wireless industrial monitoring and control networks:
The journey so far and the road ahead. J. Sens.
Actuator Netw., 1(2):123–152, 2012.

24

